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We investigate the spreading behavior of evolving clusters using unidirectionally coupled two-level hierar-
chies in one spatial dimension. In the hierarchy, while only two source particles �A� hop away from each other
without branching its offspring on the bottom level, different species of particles �B� evolve according to given
dynamics belonging to one of known universality classes on the top level. Two levels are unidirectionally
coupled from the bottom to the top level by the branching A→A+2B. We derive the spreading exponent zU of
the uncoupled region of size RU�t�� tzU up to the first order correction in terms of the spreading exponent of
source particles �zA� and that of given dynamics of the top level �zo� as zU= �1−zA�zo / �1−zo�. From the
relation, zA and zU always satisfy the inequality zU�zA for zA�zo. The inequality confirms that the scaling of
the spreading in the slave level should follow the scaling of the source in unidirectionally coupled systems. We
numerically confirm the relation for three different B-particle dynamics; annihilating random walks, branching
annihilating random walks with one and two offspring which belong to the directed percolation, and the parity
conserving universality class respectively.

DOI: 10.1103/PhysRevE.72.066122 PACS number�s�: 64.60.�i, 05.40.�a, 82.20.�w, 05.70.Ln

I. INTRODUCTION

Among nonequilibrium phase transitions, absorbing phase
transitions from an active phase into an absorbing phase have
been a field of growing interest during the past decades �1,2�.
As in equilibrium transitions recent theoretical and numerical
studies show that APT’s exhibit universality and it can be
classified according to conservation laws, dimensionality of
systems, and symmetries of absorbing states �1–3�. However
only a few universality classes have been identified so far.
Directed percolation �DP� �2–5� and parity conserving �PC�
�6–12� class are well-studied classes among others. While
the DP class includes systems with no special attributes ex-
cept the famous time reversal rapidity symmetry, the PC
class includes systems obeying branching and annihilating
random walks with even number of offsprings �BAWe�.

As a research direction to search for further unknown uni-
versality classes, composite systems of known universality
classes have been recently studied in which a system is
coupled to the others in a specific manner �8,13–25�. How-
ever the coupled systems do not always exhibit critical be-
havior. For instance, quadratically and bidirectionally
coupled DP systems still belong to the DP class despite their
complex behavior �13�. Linearly and bidirectionally coupled
systems of known universality classes such as DP or PC
processes exhibit mean-field or nontrivial critical behavior
depending on the manners of couplings �8,14–17�.

Recently, linearly and unidirectionally coupled hierarchies
of multispecies systems in one spatial dimension drew much
attention, because they reveal critical behavior at the muti-
critical point where the critical points of all hierarchy levels
coincide �18–25�. In general, the unidirectionally coupling
between levels k and k+1 is defined by branching, Ak→Ak
+nAk+1 with a positive integer n. Such a linear and unidirec-
tional coupling, to the best of our knowledge, has been first
introduced in some monomer interface growth model with
the solid-on-solid �SOS� condition �18�. It turned out that the
unidirectionally coupled DP dynamics from lower to higher

layers is the key feature characterizing gradually decreasing
critical exponents level by level of the SOS model �18�.
Some polynuclear growth models �19� and models for
growth of colonial organisms such as fungi and bacteria �20�
also exhibit the critical behavior of the unidirectionally
coupled DP processes �22�. The unidirectional coupling of
PC processes was also studied in the context of interface
growth via the dimer growth model �23�, which also leads to
the critical exponents gradually decreasing level by level at
multicritical point. The coupling of models belonging to
the same class only changes the scaling behavior of order
parameter, and it remains the scaling of spatial and temporal
correlation length, � and �, unchanged �21–23�. ���z with
z=�� /�� holds near criticality �2�.

Recent studies on the two-level hierarchies with the cou-
pling of models belonging to different universality classes
�24,25� suggest a simple criterion for the critical behavior of
the slave �B� unidirectionally coupled to the source �A� via
the coupling A→A+B. According to the criterion, if the den-
sity �B decays faster than �A and the active region RB spreads
more slowly than RA, then the resultant critical behavior of
the slave after the coupling is completely changed. The ac-
tive region �R� is usually defined as the area over which
particles are distributed and it scales in time t as R�t�� tz at
criticality �2�. In addition to the change of the order param-
eter exponent as in the coupling of the same class, the
scaling behavior of RB falls into the universality class of the
source, i.e., zA=zB. As the spreading exponent z is defined as
z=�� /�� �2�, the change of RB reflects the change of the
scaling of both � and � of the slave which scales as
���−�� and ���−�� for the distance from the criticality �.
For instance, when the source and the slave belong to the
DP and PC class, respectively, it was numerically shown that
the critical behavior of R�t� of the slave belongs to the DP
class due to the slow decay of density and fast spreading
of the active region of DP systems compared to the PC
systems �25�.
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In this paper, motivated by the criterion of Ref. �25�, we
analytically confirm the criterion for the critical behavior of
the slave unidirectionally coupled to the more slowly decay-
ing and faster spreading source using the fact that unidirec-
tionally coupled systems exhibit the heterogeneity of the ac-
tive region. The mechanism of the heterogeneity is
following. In a two-level hierarchy with localized initial par-
ticles only on the source �A� level at multicritical points, a
small cluster of particles is formed in slave �B� level due to
the coupling A→A+B. However the coupling makes the
cluster of B particles grow faster than A particles do �see
Fig. 1�. So the inequality of the growing speed causes the
cluster-size difference between the levels. As the size RB�t�
of the slave level is larger than RA�t� of the source level, the
source particles can affect only the region of size RA in the
slave level. The remainder region of the slave level is free
from the coupling, which is called the uncoupled area of size
RU=RB−RA. At multicriticality, the three lengths scale alge-
braically in time as RB� tzB, RA� tzA, and RU� tzU. Hence it
is necessary for the proof of the above criterion to show the
inequality of zU�zA.

For this reason, we study an efficient two-level hierarchy
rather than ordinary hierarchy studied so far. In ordinary
two-level hierarchy, the size RU is the distance between the
right-most particle of the slave level and that of the source
level �Fig. 1�. Hence the scaling of RU�t� is affected by the
scaling behavior of the out-most particles of the source level.
The other bulk particles of the source level can be neglected
in the dynamics of RU�t�. This reasoning leads us to the
efficient two-level hierarchy in which only two particles re-
side on the source level and their spreading behavior can be
fully controlled. The two particles of the source level play
the role of the out-most particles of the source level in the
ordinary coupled hierarchies. In the epidemic point of view,
as the two biased walkers are the sources of epidemic spread-
ing on the slave level, this simple two-level hierarchy be-
comes an epidemic spreading model with epidemic sources.

In the efficient model, each source particle only moves
away from the other with a given spreading exponent zA
without branching its own offsprings. One can control zA by
varying one-step hopping probability P�t�. The two source
particles create the other species of particles with a given rate
on the slave level where the created species resides. The
particle dynamics of the slave level can be one of any known
universality classes such as the DP or PC class. The un-
coupled region of the slave is now defined as the exterior of
the area enclosed by the two particles of source level �Fig.
1�b��.

With this model, we derive the spreading exponent zU of
RU�t� in terms of the exponent zA of the source particles and
zo of the given dynamics of the slave level in Sec. II. The
relation clearly shows the inequality zU�zA so we analyti-
cally proof the criterion. In Sec. III, the derived relation is
numerically confirmed for the various dynamics of slave
level such as annihilating random walks �ARW�, DP, and PC
dynamics. Summary and discussion are given in Sec. IV.

II. MODELS AND SCALING RELATIONS

We consider a two-level hierarchy in one dimension. On
the source level, only two particles �two A’s� reside and they
cannot branch nor annihilate. The two particles hop only to
the outward direction of each other with one-step hopping
probability P�t� defined as

P�t� = Pot−	. �1�

Then the distance between two particles RA�t� is given by
RA�t�=2�to

t P���d�� t1−	 and so the spreading exponent zA is
defined as

zA = 1 − 	 , �2�

where RA�t�� tzA. On the slave level, each particle �B�
evolves with the given dynamics which may belong to the
DP or the PC class and so on.

For the linear and unidirectional coupling between the
two levels, each A particle creates m particles on the same
and its nearest neighboring sites to the left or the right of the
slave level with the unit rate as

FIG. 1. Projections from above a two-level hierarchy; �a�
DP-PC coupling where contact process �black� and BAW with two
offsprings �gray� evolve on the bottom and the top level, respec-
tively. �b� BAW with two offsprings on the top level �gray� is uni-
directionally coupled to two source particles of the bottom level
�two black lines�. Each source particle algebraically spreads with
the DP exponent, zDP, i.e., zA=zDP.

S. KWON AND Y. KIM PHYSICAL REVIEW E 72, 066122 �2005�

066122-2



A → A + mB . �3�

When one of the m target sites is already occupied, the
branching is rejected. Starting with the empty slave level, a
small cluster of B particles is formed by the coupling �3� and
it grows in time t. Its size RB�t� increases algebraically at
criticality as RB� tzB with the spreading exponent zB=1/ZB,
where ZB is the usual dynamic exponent �1�.

As the coupling of �3� makes RB larger than RA, the clus-
ter of B particles is divided into two parts, namely the
coupled and the uncoupled area of the size RC and RU as
mentioned in the previous section �Fig. 1�b��. The coupled
and the uncoupled regions are defined as the interior and the
exterior of the area enclosed by the two A particles, respec-
tively. The size RC and RU scale with t as RC=RA� tzA and
RU� tzU at the criticality of the slave level. As RB=RA+RU
� tzA + tzU, the scaling of RB is determined by the larger one,
i.e., zB=max�zA ,zU�.

Since the uncoupled region is source-free, we assume that
the evolution of B particles in this region is autonomous.
Then each B particle spends time ����1/zo to travel the dis-
tance �, where zo is the spreading exponent of the given
B-particle dynamics without the coupling. To obtain the ex-
pression of zU in terms of known zA and zo, we start with a
very sound assumption that the right-most B particle locates
at xB�t�=xA�t�+RU�t�, where xA�t� is the position of the right
A particle.

As it takes time �A=RU�t� /vA�t��RU�t�t1−zA for the A par-
ticle to reach the position xB�t�, the B particle travels the
distance RU�t+�A���A

zo during �A. So we have the follow-
ing relations

�A � t1+zU−zA,

RU�t + �A� � RU�t�zot�1−zA�zo. �4�

As RA increases algebraically �zA�1�, �A diverges in the
limit t→
. Let us consider the ratio X=RU�t+�A� /RU�t�.
From the scaling of �4� and RU�t+�A���t+�A�zU, the ratio X
scales as X��1+�A / t�zU �RU�t�zo−1t�1−zA�zo. Hence we find
the scaling of RU�t� as

RU�t� �
t�1−zA�zo/�1−zo�

�1 + �A/t�zU/�1−zo� . �5�

As �A / t� tzU−zA→0 for t→
 due to zU�zA, we expand
the denominator in the first order of �A / t. Then RU�t� scales
as with a constant a

RU�t� � tzU�1 + at−�� , �6�

and the exponents zU and � are given by the relation

zU =
�1 − zA�zo

1 − zo
=

	zo

1 − zo
, �7�

� = zA − zU = 1 −
	

1 − zo
�8�

with 	=1−zA.
In this derivation, we find not only the leading scaling

behavior of RU�t� but the first order correction to the scaling.

For zA=zo such as DP-DP or PC-PC coupling of Refs.
�22–25�, one finds zU=zo and �=0 from Eqs. �7� and �8� as
expected. When source particles spread more slowly
�zA�zo� such as PC-DP coupling of Ref. �24�, the scaling of
the spreading on the top level should not be affected by
source particles, i.e., zU=zo. However, in this case, Eqs. �7�
and �8� yield zU�zo and ��0 which contradict with the
physical prediction. Hence Eqs. �7� and �8� are valid only for
zA�zo. Finally for zA�zo such as the DP-PC coupling of
Ref. �25�, the difference zA−zU is given as �zA−zo� / �1−zo� so
we have the inequality zA�zU. zU also clearly continuously
varies with zA or 	. Hence the scaling of RU�t� is nonuniver-
sal for faster spreading source particles. According to the
criterion of Ref. �25� for the coupling of more slowly decay-
ing with more quickly spreading system such as DP-PC cou-
pling �zA�zo�, the spatial and temporal correlation lengths
follow the scaling of the source level. Combining three
cases, we have the inequality zU�zA from Eq. �7� so the
criterion for correlation length suggested in Ref. �25� is ana-
lytically confirmed. As zB is given by the relation zB
=max�zA ,zU� for zA�zo, we have zB=zA for zA�zo. On the
other hand, we have zB=zo for zA�zo. Hence when the
source particles spread much faster, the spreading behavior
of the slave level is completely determined by the source
one.

III. MONTE CARLO SIMULATION

To confirm the relation of Eqs. �7� and �8�, we perform
Monte Carlo simulations for three different dynamics of
ARW, BAW with odd and even offspring which belong to the
DP and PC class, respectively.

The three dynamics can be integrated into following reac-
tions. A randomly selected B particle hops to one of the
nearest neighboring sites randomly with probability p. With
�1− p�, the selected particle creates n offsprings on its n
neighboring sites of the left or the right with equal probabil-
ity. When two particles happen to be on the same site by
hopping or branching, they immediately annihilate each
other. The dynamics defines BAW with n offsprings
�BAW�n�� �6,7,26�.

For ARW dynamics, we only consider p=1 for any n. So
B particles undergo only the reaction, 2B→� upon colliding
with each other. The spreading exponent of ARW is zARW
=1/2. As BAW�n� belongs to DP for odd n and PC class for
even n, respectively �26�, we choose n=1 and 2 for the dy-
namics of the DP and PC class �7,26�. The three dynamics
give different values of zo, but it only changes the slope of
zo / �1−zo� in zU−	 plane.

Initially only two A particles are located on the pair of
central sites of the source level, while the slave level is
empty. For the coupling �3�, we set m=1 for DP and m=2 for
both ARW and PC dynamics to conserve the parity of the
total-particle number. Then one particle is randomly selected.
If the chosen particle is A, then it creates m B particles with
unit probability on the same and its m−1 nearest neighboring
sites to the left or the right with equal probability on the
slave level provided that the all target sites are empty. After
the branching, the A particle hops to the outward direction
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with P�t� of Eq. �1� with Po=1. If the selected particle is B,
then it performs the given dynamics without interactions
with A particles.

For ARW dynamics, we measure the spreading distance
RU�t� averaged over all samples for various 	 values from
0.475 to 0. Figure 2�a� shows the existence of the uncoupled
region of the average size RU�t�= �RB�t�−RA�t�	 increasing
algebraically in t, where the symbol �¯	 denotes the average
over all samples. For fast spreading source particles
�zA�zo= 1

2
�, the spreading behavior of the slave level asymp-

totically follows the same scaling as that of the source
level as shown in Fig. 2�b�. Using the local slope of RU�t�
defined as

zU�t� = ln�RU�Mt�/RU�t��/ln M , �9�

we estimate the asymptotic value zU for various 	 values
from 0.475 to 0 with M =5 �Fig. 3�. Substituting zA=1−	
and zo= 1

2 into Eq. �7�, we find the relation of zU to 	 as
zU=	 for ARW dynamics. In Fig. 4�a�, we plot the line
zU=	 and simulation results, which coincide with each other
except the deviations by the correction �8�.

To confirm the correction �8�, we measure the local slope
of the product Y�t�=RU�t�t�−zU by multiplying t�−zU to Eq.
�6�. Y�t� asymptotically scales as Y�t��bt�+c, where b and
c are some constants. As Y�t��bt� in the limit t→
, it is
easy to measure � in simulations. Figure 5 shows the local
slope �ef f of Y�t� for ARW dynamics similarly defined as Eq.

�9�. � is given as �=1−2	 from Eq. �8� for ARW dynamics
and it also agrees well with our simulation results �Fig. 4�b��.

With the same method, we measure zU and � for DP
�BAW�1�� and PC �BAW�2�� dynamics. In the BAW�1�
model, an evolving cluster in absorbing environment exhibits
the power-law spreading of R� tz only at criticality, so we
perform simulations at the criticality pc=0.107 of the un-
coupled BAW�1� model �26�. However in the BAW�2�
model, the evolving cluster in vacuum exhibits the power-
law spreading both at criticality and in absorbing phase. In
absorbing phase, the spreading distance R follows the scaling
of ARW dynamics of R�t�� t1/2. Since ARW dynamics was
already discussed, we measure zU and � of BAW�2� at
pc=0.5105 of the uncoupled case �7�.

Figures 6 and 7 show zU and � for BAW�1� and BAW�2�
models for various 	. As in ARW, RU and its correction

FIG. 2. ARW dynamics on the top level: �a� The spreading
distance of A and B clusters, RA�t� �dashed� and RB�t� �solid� for
	=0.45. The gap RU�t� of the two regions develops and also in-
creases algebraically. �b� Effective exponents of RA and RB, zA�t�
�dashed� and zB�t� �solid�. The two exponents coincide
asymptotically.

FIG. 3. ARW dynamics on the top level: Effective exponent
zU�t� for 	=0.475, 0.45, 0.4, 0.35, 0.3, 0.2, 0.1, and 0 from top to
bottom.

FIG. 4. The lines and symbols correspond to �a� the zU=S 	 line
with S=zo / �1−zo� and its numerical estimates �b� �=1−	 / �1−zo�
lines and its numerical estimates for ARW, BAW�1�, and BAW�2�,
respectively. The S and �1−zo� are 1 and 1/2 for ARW, 1.721 and
0.3675 for DP, 1.353 and 0.425 for BAW�2�, respectively.
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shows nonuniversal scaling depending on the scaling
of source particles. For the comparison with the prediction
�7�, we plot numerical estimates and the line of
zU=	(zo / �1−zo�) with zo / �1−zo�=1.721 for DP and 1.353
for PC dynamics in Fig. 4�a�. In Fig. 4�b�, the line
�=1−	 / �1−zo� of Eq. �8� and numerical estimates of � are
plotted for the three dynamics. All numerical results for the
three different dynamics satisfy very well with the relations
�7� and �8�.

The two-level hierarchy studied in Refs. �24,25�
shows nontrivial scaling of RU only for DP-PC coupling
where dynamics of the bottom and the top level belong to the
DP and PC class, respectively. In DP-PC coupling, as
the source cluster spreads faster than that of the top level, the
scaling of RU should deviate from the PC class. From Eqs.
�7� and �8�, one expects zU=0.497�5� and �=0.136�5� for
DP-PC coupling using the value of zDP=0.632 613�5� and
zPC=0.575�5� �5,6�. Comparing with the numerical result
zU=0.60�1� of Ref. �25�, the expected value is small. How-

ever, even in our simplified model, the numerical estimate
zU=0.53�2� for zA=zDP and zo=zPC �Fig. 6�b�� is also larger
than the expected value zU=0.497�5� of Eq. �7� due to the
correction with the small exponent �=0.136. Hence, the dif-
ference between the expected value of zU from Eq. �7� for the
DP-PC coupling and the numerical estimate of zU of Ref.
�25� could be explained by the correction to the scaling of
RU�t� with a small exponent.

IV. SUMMARY

In summary, we investigate the scaling behavior of un-
coupled regions using a simple unidirectionally coupled
two-level hierarchy. On the source level, only two source
particles �two A’s� reside and they are driven to opposite
directions without branching offsprings on their own
level. On the slave level, the other species of particles �B�
evolve with the given dynamics belonging to one of the
known universality classes. The two levels are unidirection-
ally coupled from the source to the slave level via the
branching A→A+mB with unit rate.

Starting with the empty slave level, a small B cluster is
formed by the coupling and it spreads with the given dynam-
ics. As the size of the B cluster is larger than the distance
between two A particles due to the coupling, the B cluster
can be decomposed into two parts, namely, coupled and un-
coupled regions. The uncoupled region of the size RU�t� at
given time t is defined as the area of the B cluster outside the
region enclosed by the two A particles. Based on the assump-
tion that B particles autonomously evolve by the given dy-
namics in the uncoupled region, we derive the spreading ex-
ponent zU defined as RU�t�� tzU up to the first correction by
heuristic arguments in terms of the spreading exponent of A
particles �zA� and that of the given B-particle dynamics �zo�.

The relation shows that zU and the correction exponent �
continuously vary with zA and zo. We numerically confirm
the relations of zU and � for three different B-particle dy-

FIG. 5. ARW dynamics on the top level: Local slope �ef f of Y�t�
for 	=0.475, 0.45, 0.4., and 0.35 from bottom to top.

FIG. 6. zU�t�: From top to bottom in each panel �a� BAW�1� for
	=0.3675, 0.3, 0.2, and 0.0. �b� BAW�2� for 	=0.425, 0.3675, 0.3,
0.2, and 0.0. 	=0.3675 and 0.425 correspond to 	DP and 	PC.

FIG. 7. ��t�: From bottom to top in each panel �a� BAW�1� for
	=0.3, and 0.2. �b� BAW�2� for 	=0.3675, 0.3, and 0.2.
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namics; annihilating random walks, BAW�1� and BAW�2�
dynamics for the DP, and the PC class, respectively. From
the relation, we find that zA and zU always satisfy the in-
equality zU�zA. Hence we analytically confirm the criterion
for the critical behavior of spatial and temporal correlations
of the slave as suggested in Ref. �25�. Since our derivation of
the spreading exponent zU is only based on the given spread-
ing behavior of each level, the relation would be valid for

reaction-diffusion systems exhibiting Markovian spreading
behavior without special attributes such as long-time
memory effect on walks.
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